
Models and Peterson’s
Algorithm



This is Peterson’s algorithm:

The successors of 〈yield = 0, .6,enter [0] = T , .14,enter [1] = T 〉
are:

1. The t0 successor is
〈yield = 0, .3,enter [0] = F , .14,enter [1] = T 〉.

2. The t0 successor is
〈yield = 0, .8,enter [0] = T , .14,enter [1] = T 〉.

3. The t1 successor is
〈yield = 0, .6,enter [0] = T , .15,enter [1] = T 〉.

4. There is no t1 successor.
7 / 45



This is Peterson’s algorithm:

The successors of 〈yield = 0, .6,enter [0] = T , .14,enter [1] = T 〉
are:

1. The t0 successor is
〈yield = 0, .3,enter [0] = F , .14,enter [1] = T 〉.

2. The t0 successor is
〈yield = 0, .8,enter [0] = T , .14,enter [1] = T 〉.

3. The t1 successor is
〈yield = 0, .6,enter [0] = T , .15,enter [1] = T 〉.

4. There is no t1 successor.
7 / 45



How can the t1 successor of
〈yield = 0, .6,enter [0] = T , .14,enter [1] = T 〉 be
〈yield = 0, .6,enter [0] = T , .15,enter [1] = T 〉? Both threads are in
their critical sections.

• State 〈yield = 0, .6,enter [0] = T , .14,enter [1] = T 〉 does not
exist.

• There is a bug in Peterson’s algorithm.

• The previous slide was wrong.

• State 〈yield = 0, .6,enter [0] = T , .14,enter [1] = T 〉 is never
entered.

8 / 45



How can the t1 successor of
〈yield = 0, .6,enter [0] = T , .14,enter [1] = T 〉 be
〈yield = 0, .6,enter [0] = T , .15,enter [1] = T 〉? Both threads are in
their critical sections.

• State 〈yield = 0, .6,enter [0] = T , .14,enter [1] = T 〉 does not
exist.

• There is a bug in Peterson’s algorithm.

• The previous slide was wrong.

• State 〈yield = 0, .6,enter [0] = T , .14,enter [1] = T 〉 is never
entered.

8 / 45



What does Peterson’s algorithm achieve?

1. Mutual exclusion using only atomic reads and writes

2. Mutual exclusion and first-come-first-served fairness

3. Mutual exclusion using busy waiting

4. Mutul exclusion using test-and-set operations

9 / 45



What does Peterson’s algorithm achieve?

1. Mutual exclusion using only atomic reads and writes

2. Mutual exclusion and first-come-first-served fairness

3. Mutual exclusion using busy waiting

4. Mutul exclusion using test-and-set operations

9 / 45



What properties does the following state/transition diagram show?

1
.1 .3

2
.2 .3

3
.1 .4

6
.2 .4

t0

t1

t1

t0

1. No deadlocks can occur

2. There are no race conditions

3. No starvation can occur, but deadlocks may occur

4. Neither deadlocks nor race conditions may occur

10 / 45



What properties does the following state/transition diagram show?

1
.1 .3

2
.2 .3

3
.1 .4

6
.2 .4

t0

t1

t1

t0

1. No deadlocks can occur

2. There are no race conditions

3. No starvation can occur, but deadlocks may occur

4. Neither deadlocks nor race conditions may occur

10 / 45



Which of the following are strategies to avoid deadlocks?

1. Using locks

2. Requiring that all threads acquire locks in the same order

3. Limiting the amount of concurrency

4. Using counting semaphores instead of binary semaphores

11 / 45



Which of the following are strategies to avoid deadlocks?

1. Using locks

2. Requiring that all threads acquire locks in the same order

3. Limiting the amount of concurrency

4. Using counting semaphores instead of binary semaphores

11 / 45


